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Aerodynamic Tools

Modeling & Simulation Ground Test Flight Test
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Space Shuttle Program Aerodynamics & Fluid Dynamics

Desigh Development Operations Retirement
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Wind tunnel costs and times dominated
aerodynamic database development before 1980.
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But trends can change ...
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Mass 2,041,166 kilograms/4.5 million pounds
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Shuttle External Environments
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Ground winds

Ignition Over Pressure
» 7.8 million Ibs thrust
Ascent airloads

» Design q = 819 psf
Separation Dynamics
Orbital debris
Hypersonic Entry

» 1650 °C/3000 °F
Ground Effects




“Engineering is the art of compromise,” Henry Petroski

Design goal External Tank

Lightest structure that can 154 ft/47 m long

survive a harsh environment 60,000 Ibs empty/ 1,600,000 Ibs filled
and maximize payload to orbit. 27,215 kg empty/725,748 kg filled

Empty/filled = 1/27

LH> @ -423 °F/20.4 K Typical soda can, 1/28, 14 gm/394 gm
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LO2 @ -297 °F/90.4 t




Post Challenger Shuttle Problems

* January 1986 No analytical capability to predict aerodynamics

* 1987 Joseph Steger & Pieter Buning/NASA ARC proposed
development of an overset capability to simulate the Shuttle
ascent configuration

* Initially focused on fast-separation abort and STS-| trajectory
lofting base pressure issues.

* Payload bay door loads and many more..

Reference: FEVV.Martin, Jr., and J.P. Slotnick,“Flow Computations for the Space Shuttle in Ascent Mode
Using Thin-Layer Navier-Stokes Equations,” Applied Computational Aerodynamics, PA.
Henne, ed.,AlAA, 1990, pp. 863-886.
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Historical Perspective

o Discrepancies exist between aerodynamic predictions and flight ex-
perience.
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o Force and moment data was easily corrected with flight derived
aerodynamic increments.

o Aerodynamic loads (pressure distribution) cannot be readily cor-
rected because of limited flight pressure measurements.

“— Lockheed !
Engincering & Sciences Company Jeff P. Slotnick / March 8, 1989
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'STS ASCENT CONFIGURATION

COMPARISON OF PRESSURE COEFFICIENT
IA105A Wind Tunnel Test with F3D/Chimera Navier—Stokes Solver

Moch 1.05
Alpha -3 deg
Re  2.5x10/ft
(axm-l) Wind Tunnel

Computation

s U —— S —

NASA Ames Space Shuttle Flow Simulation Group _PRELIMINARY | 2/12/88




Space Shuttle Launch Vehicle (SSLV) Grid System Evolution

Early 80’s grid system
3 Grids

| Ok surface points

Late 80’s grid system
14 Grids

35k surface points

0.3 million volume points

|.6 million volume points

Early 90’s grid system -y
N> :
113 Grids oy  2004grid system
267 Grids

636k surface points

268k surface points

| 6.4 million volume points
34.8 million volume points
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Bipod Ramp Redesign
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Solid Rocket Booster Surface Pressures
® = 0°, Mach 1.25, WT Re((Gomez & Ma, AIAA-94-1859)
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Flight Orbiter Wing Loads (Left Wing)
Mach 1.25, Flight Re

(Slotnick, Kandula, Buning, AIAA-94-1860)

—e- CFD solution
o STS-50 Flight Strain Gage Data
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STS-107 Debris AlAA 2005-1223

Outline of
RCC panels
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The loss of STS-107 initiated an unprecedented detailed
review of all external environments.

Ascent airloads, acoustics, heating

Debris liberation, transport and capability
assessments.

Bipod redesigh assessments.

Greatly increased emphasis on verification & validation.

STS-114 and subsequent missions
» PAL ramp foam loss, additional redesign work.

» Prelaunch, inflight and postflight debris transport
assessments.
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Debris transport aerodynamic models &
prediction tools developed




NSTS 08303 day of launch ice ball launch commit tool
developed by Stuart Rogers/ARC NAS-07-004

NSTS 08303 Rev D, Change 13 Iceball Allowable
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Wind tunnel validation and CFD extrapolation

’ ,\'Jl‘".
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Previous wind tunnel comparisons focused on
wing loads.

CFD conditions: M__ = 2.50,7(1 = 2.03°, B = 0.00°, Reynolds # =250 x106/ft, IB elevon =74.07°, OB elevon = -4,39°
WTT conditions: M_ = 2.50, o = 2.03", = 0.00°, Reynolds # = 2.50 x106/f't, IB elevon = 4.07°, OB elevon = -4.39°

IA-613B WTT - lower wing
| |A-61 3I13 WTT - upper lWing

2000 2100 2200
XgT, inches

AlAA 2004-2226




Wind tunnel test pressure comparisons show
good agreement with predictions

1500
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Detailed comparisons along the LO; feedline were
key to understanding protuberance airloads.
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Proposed ice/frost ramp configuration, tested but not flown.
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AlAA 2008-4246

(Vg
)
(Vg
2N
(qo]
C
(g}
>N
.
C
)
s
i e
.00
——
m




Parallel computing from prelaunch to landing

On-orbit Assessments
Hypervelocity Orbital Debris
s e - T AIAA-2003-1248
% Contingency Abort

Transonic airloads
Roll maneuver

\\\\\\\\\\

West/MSFC



Timeline of Computing & Overset Space Shuttle Applications

Cray X-MP Cray Y-MP SGI Origin 2000 SGI Altix Pleiades 772
0.2 Gflops 2.5 Gflops 128 Gflops 2.3 Tflops 608 Tflops  Ttlops
o0 —90 ® ® @ ® o—0O ® ®
NAS Cray 2 Cray C90 SGI Origin 3800 Columbia 2011
Begins 2 Gflops 15 Gflops 1.2 Tflops 67 Tflops
Chimera
ARC3D F3D : PEGASUSS5 OVERFLOW 2.1 OVERFLOW 2.2
Grid Tools
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We went to the moon without CFD or parallel
computers.Why do we need them now!

k.

* Reduce number of physical tests
and improve relevance when you
run test

* Nearly 100,000 hours (I | years)
of Shuttle wind tunnel testing

* Many facilities have shut down or
been mothballed
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Overset CFD was a key part of many External Tank
redesign assessments and debris assessments.

Multiple ice/frost ramp redesigns
Ascent & entry windows airloads
Discrete airloads data book updates
Venting database updates
Aerothermal support & others

. RCS Tyvek® covers

Bipod Ramp Removal

+7 Aero-Vent
Modification

Modified Aft Longeron

LO, feedline bracket redesigns
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But there is still more work to be done...

STS-134,5TS-135?7
Some STS-I| flight anomalies are still beyond current CFD tool
capabilities, e.g.
* Acoustics and heating on complex configurations with
strong shock wave-boundary layer interactions

* Physical models (turbulence, chemistry, multiphase flows,...)
are key limitations that need to be improved.

Future programs will need 10s to 100s of millions of CPU-hours
to characterize external environments

* There is evidence that we need |0x more resolution and
| Ox more solutions than we can currently produce to
generate grid converged solutions and populate databases.
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